AD=A116 860 SOUTHERN ILLINOIS UNIV CARBONDALE F/6 1271
PREPROCESSING TECHNIQUES IN TRANSIENT ANALYSIS.(U)
APR 82 D W KAMMLER: 50602-7”-01“
RADC=TR~B2=-72

UNCLASSIFIED

EEEEENEEENEEEE




AD A116860

DM FLE Ccopy

‘ V“‘ /r

RADC-TR-82-72
Final Yechnical Report
April 1982

PREPROCESSING TECHNIQUES
IN TRANSIENT ANALYSIS

Southern lilinols University at Carbondale

David W. Kammler

APPROVED FOR PUBLIC ~ RELEASE; DISTRIBUTION

This effort was tunded totally by the Laboratory

ROME AIR DEVELOPMENT CENTER

UNLIMITED

Directors' Fund

Air Force Systems Command '

Griffiss Air Force Base, NY 13441"

82 07

“’

13 003

DTIC

w ot ECTE

L1398 5

E




, S T TP ot A 0 AR S s o e

- teat 1T R

.« Jflﬁgz‘a}‘ W.{%ﬂ? TRRSPRNTE FIN

S

e
€ s B
o
Ay

g T L #"-‘:-;-,V-;-:rff SR

LN o :sr,;w},;,r’?g 4




MISSION
of
Rome Atr Development Center

RADC plans and executes nesearch, development, test and
selected acquisition proghams in support of Command, Contrnol
Communications and Intelligence (C31) activities. Technical
and engineerning suppont within areas of technical competence
{8 provided to ESD Progham Offices (P0s) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sun-
veillance of ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonosphenic propagation, sofid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.

-y -




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS BAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

[T REPOAT NUMBER Z. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-82-72 D- A1l 940

& TITLE (and Subtitie) $. TYPE OF REPORY & PERIOD COVERED

Final Technical Report
PREPROCESSING TECHNIQUES IN TRANSIENT

ANALYSIS G.NPleolmno ONG. REPORT NUMBER
7. AUTHOR(a) S. CONTRACT ON GRANT NUM 3]

David W. Kammler F30602-78-C-0148

3. PERFORMING ORGANIZATION NAME AND AODRESS 10. ::gggngoz#‘zsgmm‘%u‘tg:. TASK
Southern Illinois University at Carbondale
Carbondale IL 62901 LD1204P1
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Rome Air Development Center (COT) ‘fp;iizizg{Aets
Griffiss AFB NY 13441 75
14. MONITORING AGENCY NAME & ADDRESS(If ditf. from C {ling Otflice) 15. SECURITY CLASS. (of this repors)
Same UNCLASSIFIED
184, DECL ASSIFICATION/ GOWNGRADING |
SCHEDULE
N/A_

6. DISTRIBUTION STATEMENT (of this Repoet)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i{ dilferent from Repert)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Haywood E. Webb (COT)

This effort was funded totally by the Laboratory Directors' Fund.

19. KEY WOROS (Continue on reverse side il necessery and identity by block number)

Prony Algorithm Pole Location
Dirichlet Series Decomposition

:’. ABSTRACT (Continue on reverse side !f necessary and !dentily by block number)

In the Prony algorithm one determines pole locations from uniformly
spaced wave form samples. In practice those samples are noisy which
limits the effectiveness of the algorithm. This report first subjects
the data samples to a pole invarient linear transformation to reduce
the signal to noise ratio. The particular linear transformation chosen

is based upon apriori knowledge of the regions where the poles are
located.

DD 55" M73  oimon or 1 nov s s omsovere

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bnatered)




S T e e ¢ e o

UNCLASSIFIED
SECUMTY CLASIIFICATION OF THIS PAGE(When Data Entered)

UNCLASSTFIED

SECURITY CLASSIFICATION OF TH'" PAGE(When Data Entered)




ABSTRACT

Transient analysis deals with the problem of numerically
determining the poles S1sSgser- associated with the Laplace trans-

form of a given real transient y(t) = % a exp(svt) (where

Re s, < 0 for each v), from a knowledge oz its samples

Y = y(kat), k = 0,1,... . In practice, the samples YorY1:Y2s---
are usually contaminated with noise, and this serves to limit the
effectiveness of the computational schemes of Prony, Bellman, Jain,
Van Blaricum, etc. which have been developed for extracting the

first few s 's. The performance of these algorithms can be greatly

v
enhanced if the data MDAD S IEEE is first subjected to a suitable
sequence-to-sequence transformation. Any such linear pole
preserving transformation must have the simple form

+ ..., k=0,1,,.. where

Yk T Y0k Y 1V ker T Y2Vke2
Y(z) = Yo ! Yy2 *+ Yozt o+ L. is analytic and zero free in the unit
disc |z| < 1. In most cases of interest, y(z) may be chosen so

as to greatly suppress the effects of noise.
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[ PREPROCESSING TECHNIQUES IN TRANSIENT ANALYSIS
i David W, Kammler

!
i

ABSTRACT

We consider the problem of finding the poles Zys Zoseees

z associated with the z- transform of the sequence

y = (yo,yl,yz...) of samples
yk = Y(kT)’ k = 051,2’--.
of the transient
n
Y(t) :Z a exp(s,t), t >0
v=1

emitted by 2 given n-th order linear system. In principle,

exactly the same poles can be extracted from the sequence
u =Ty vwhen I' is a seguence-to-sequence transformation of
the form I' = Y(E) where E is the shift operator and Y(z) is
analytic and zero free on the unit disc |[z] < 1 . Such a
preprocessing operator T can be chosen so as to suppress
additive noise or to selectively enhance one or more of the

poles without annihilating the others. Using such prepro-

St

cessing operators we obtain a common conceptual framework for

all of the previously used schemes for transient analysis

(including those of Prony, Van Blaricum & Mittra, and Jain) 3

v
RGP S

and we provide a theoretical basis for several promising new 1

algorithms,
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1. INTRODUCTION TO TRANSIENT ANALYSIS

Let

N svt
(1) Y(t)=Za'\)e , t>0
v=1]

denote an n-th order approximation to the transient emitted
by a physical system in response to some initial excitation
cf.[1]. (In the appendix we present a mathematical model for

a damped vibrating string which serves to illustrate the kind

of phenomena we wish to analyze.) We consider the problem
of numerically determining n and the complex frequencies
Sys...ss  from a knowledge of the sequence y=(yo,y;s¥5s--.)

of uniformly spaced samples

(2) ¥, = Y(kT), k = 0,1,2,...

where T > O is the sampling interval., We shall assume that
Y is real valued so that the a,,'s and s_'s occur in complex
conjugate pairs, and we assume that Y is nondegenerate in
the sense that the s,'s are distinct and the a,'s are
nonzero. We further assume trat the sv's all lie in the

left half plane so that Y(t)—> 0 as t —> =, By substituting

t=kT in (1) we see that the samples have the representation

n
k
(3) yk = E avzv y k:O’l’zllto
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with
(5s) fzyl <1, v=1,...,n.

Since s,,...,s_ occur in complex conjugate pairs the same is
1 n P

true of Zyre..s2 SO that the coefficients Cp2C€pre--2Cy of
the corresponding characteristic polynomial

p— n— — —
(6) c(z) = o+ Cyz + ...+ ooz ﬂcn(z zl)...(z zn),anR,cnéo,

are all real valued. We shall assume that the sampling

interval T is sufficiently small so that Zys...s2, are

distinct and so that the inversion of (4)

(7) S = T_l gnzv’ V=1,...,n

can be effected unambiguously without undue regard to aliasing.
We shall find it convenient to introduce the shift

operator E which is defined so that
(8) E(yo,yl,yz,...) = (yl’yz,yy...)
or equivalently

Eyy = Y41 K=0.1,2,...,

and we shall let I denote the corresponding identity

operator. We observe that

E(IIZ’ZZQo--) = Z'(l,Z,Z2,...)

TN AW L AT S Ty R L -
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so that the application of the operator E-zl amnnihilates the
power sequence (1,2,22,...). This being the case, since (3)
expresses y as a linear combination of n such power sequences

corresponding to 2z »2 ve must have

l,...

(9) (E-z))...(E-z )y = o.
By using (6) we may rewrite (9) in the form

n
c(E)y:(cOI+c E+...+c E )y:coy+c1(Ey)+,,,+cn(Eny):0

1

or equivalently
5 (10) Je =0

where the data matrix
Yo Y1 ++- Yp

(11) Y=1|Y1 52 *-- Ynn1

has the columns y, Ey,..., Eny and where e = (co,cl,... n) -
Since we have assumed that t}~ av‘s are nonzero and the zv's

are distinct, the first n columns of J are linearly indepen-

dent, J has rank n, and (apart from a scale factor) the null

vector € is uniquely determined.. B
These observations suggest the following approach to the

transient analysis problem, Given the samples

y = (yo,yl,yz,...) we attempt to make some slight over-

estimate of the system order n and form the data matrix (11).

We numerically investigate the null space of J and, if




necessary, reduce n so as to obtain an essentially unigue
null vector e¢. After effecting the factorization (6) and
using (7) we then obtain the desired sv's. Almost all of
the presently used noniterative schemes for computing the
E s,'s from the yk's fall within this counceptual framework.

For example, when we use the well known method of Prony,

we ignore all but the first n rows of Y and after arbi-

trarily setting cnzl we solve the resulting system of

linear equations

- - r -

Yo Yy --- Yq cy [ 0]
Yy Y2 +++ Ynal . ©
(12) |. f -
c 1 .
_yn—l Yn *** Yon-1 _1 0

to obtain the remaining components of the approximate null
vector c.

Perhaps the most natural approach to finding a null

vector for Y (especially when d has been contaminated with
noise) is to determine ¢ so as to minimize the Euclidean

length of Ye subject to some normalization of the Euclidean '
length of e, or equivalently, to minimize the Rayleigh .

quotient

2
(13) cTquc - ”dc ”2

T 2
e el

(In so doing we avoid changing an intrinsically homogeneous




problem into an inhomogeneous one as in (12) by the
imposition of a constraint ¢,=1 on one of the components of
c€.) Any minimizing o for (13) must be an eigenvector
belonging to the smallest eigenvalue of the symmetric
nonnegative semidefinite (n+l) x (n+l) matrix th:j,
cf.[8,p.266]. In the ideal noise free setting where the
system order n is known, both Y and 3T§j will have rank n,
the minimum eigenvalue of STU will be zero, and the corres-
ponding eigenvector ¢ (unique to within a scale factor) will
be the desired null vector of Y . In practice, we do not

know the system order and we can only approximate the elements

o
(14) (‘dTn)i‘_j = Zyi+k Yiugr 1230 = 01ty m
k=0
due to noise contamination of the data and to the use of
finite precision arithmetic on our computer so our computed
3fP3 will not have either a zero eigenvalue or a null vector.
Nevertheless, by using well known numerical methods [7] we can

effect the eigenvalue decomposition

- T T T T
(13) Y7y = Agvgvg + Mywyvy + o0+ A v v

where Ay > A, > ... > A > 0 are the eigenvalues and

1_
Vo2 Vyreee0V, 2 corresponding orthonormal set of eigenvectors
for 5TH . If we purposely use a value of n which is a bit

too large, we can analyze the distribution of the kk‘s and

thereby ascertain the correct system order, e.g., when n is

* gl &




correctly chosen we might expect to lhave An-l > > An and
An = 0. Tne corresponding v, is then a good choice for e,
This approach has been successfully developed by VanBlaricum
and his coworkers, [1,9].

As an alternative to the eigenvalue decomposition (15),
we can use a singular value decomposition of Y to obtain

the ¢ which minimizes (13). The data matrix Y can be

represented in the form

T T T
(16) J = OQigVg + OV + ... + 0w v

where 0, > oy > ... >0 > 0 are the singular values of g,
where v., 'l’ sy Vo are orthonormal vectors from RP+1, and
wnere Uy, W, ..., W are orthonormal sequences, (Indeed,

Yor Vy» ..-> ¥V are again an orthonormal system of eigenvectors
of 9TY as in (15) with oy = )'11{/2, k=0,1,..., n and
uk:ﬂiaj v, for each k for which Ok# 0.) Tne o, "S and v 's
can be computed directly from the elements of the data
matrix Y without first forming:jTj, cf.[2,3]., The distri-
bution of the ok's can be used in the same way as that of
the Xk's to help determine the system order, and the right
singular vector v, serves as an approximate null vector ¢
for ¥ .

In principle, the singular value decomposition (16)
should result in a somewhat better conditioned estimate of

the approximate null vector ¢ than the eigenvalue decomposi-

tion (15). Assuming 0, .1 > 0,s it can be shown that when Y
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Lo o

is replaced by Y + £ in (16) the resulting perturlation Aec
which results in the normalized approximate null vector

c =V satisfies the bound

an Meely o 9% L pEn, + el

e ”2 %-1 " %n

whereas when EjTj is replaced by,ﬁlrj +MW in (15) we have

the corresponding bound

as) 2ol < Ao gl « oty
e ”2 Aoy - A

with both bounds being sharp. The condition number

2
(19) KE = )\0 = OO
Py - A 2 2
n-1 n a 1~ o
- n {

n
associated with the null vector computation based on (15) is

usually many orders of magnitude larger than the corresponding

condition number

(20) Ko = ___L

associated with the null vector computation based on (16).
On the other hand, when using the eigenvalue decomposition
we must store only one copy of (a suitable truncation of)
the data sequence y = (y5sYys¥ps...) to use in computing the
elements (14) of E?T:1 , and this symmetric (n+1)x(n+1)

matrix is then used as the input to a routine which performs




the eigenvalue computations, In contrast, we must assemble
o (which requires n+l times as much storage as y) to use
as the input for a singular value decomposition analysis.
Vhen the system order n is large and when many rows of Y
are known and available for use, this additional storage
requirement for the singular value decomposition may very
well prohibit its use,

The above formulation of the transient analysis problem
has been strongly influenced by a recent paper of Henderson
[4] and by Volume I of the technical report [1] of Auton
and Van Blaricum., An unusually complete annotated biblio~
graphy of related papers and technical reports is given in

Volume III of [1].




2. PREPROCESSING WITH THE TAIL SUM OPERATOR

Suppose that we are given a transient sequence

y-= (yO’yl’yZ"“) having components (3) with Byseeesy
being nonzero and with ZyseesaZy being distinct points
within the unit circle, and that we wish to determine the
z,,'s numerically. Although it is possible to process tne
yk's‘directly as described in the previous section, it is
often advantageous to use the yk’s to generate an auxiliary
sequence uw = (uo,ul,uz...) from which we subsequently
extract the z,'s . This procedure is known as preprocessing.
Before giving a more precise definition, we shall consider

a specific example.

We define the tail sum operator S to be the sequence-

to-sequence mapping for which
)
(21) Sy, = Zykﬂ , k=0,1,2,... ,
¢=0

i,e., to generate the elements of w = Sy we compute

(22) u + + ... k=0,1,2,...

k= Yk T Y1 t Y42

directly from the elements of y. Using (21) we see that

0
SZk = Z Zk+£ = Zk/(l—Z)
£=0

so that

2 -
S(1,z,2°,...) = (1-2) L (l,z,zz,...) ’

10




i.e., the power sequence (l,z,zz,...) is an eigenvector of

S corresponding to the eigenvalue (l—z)-1 for every choice

of |z|] < 1. This being the case, if y has the representation
(3) (so that y is a linear combination of n such power

sequences), then g=Sy has the components
n 1
(23) uk = E a\) zl\j ’ k=0,1,2,.,_ ’

where
*
(24) a’\) =a’v/(1"’zv)’ V:l,.,., n,

We thereby see that the seqQuence w=Sy has exactly the same
poles Zy5...52, 85 ¥, SO it is possible to extract these
poles from w as described in the previous section. Using

*
(24) we see that the ratio av/av is large when z,, is near 1,

and thus the pole z_, is more strongly represented in u than

Y
in y when this is the case. Moreover, we might éxpect the
summation (22) to suppress some of the effects of any noise
which may have contaminated the yk's. This being the case,
we might reasonably hope to extract slightly more accurate
poles from w than we could obtain directly from y.

Of course, if a single application of S tends to
suppress the noise and enhance the poles which lie near z=1,
5‘? the repeated application of this operator might very well be

expected to do an even better job. The application of S to

the seqyuence Sy gives the sequence Szy) etc., with each of

11




the sequences y, Sy, Szy,... having exactly the same poles
Zysee-s2 . This suggests three different schemes for
computing these poles, First of all, we might select some
fixed p=0,1,2,... and, following our earlier approach,

attempt to find a null vector e for the data matrix

Spy0 Spy1 “es Spyn 1
P P P
5%y Sya --- Sy
(25) P P P
S%y2 STy, S ¥n+2
L.

0. I.) Upon

(which reduces to (11) wnen we take p=0 and S
effecting the corresponding factorization (6) we obtain the
z,'s . The second approach is suggested by the observation
that in the absence of noise the exact null vector ¢ is
orthogonal to the first row of the matrix (25) for each
p=0,1,2,... . VWe might therefore seek a null vector ¢ for

the matrix

(26) | s%y, s%, ... s

J

and again obtain the 2z 's from the resulting factorization

Y%

(6). Finally, by repeatedly applying S to (3) we see that

v

n ) -
(27) sPy, = 3 ayzy [(1-z,) 1P, p-0,1,2,..., k=0,1,2,...
v=1

12




and thereby observe that for each fixed k=0,1,2,... the
sequence y, .Syk, Szyk,... bhas the associated poles

v, = (l-zv)—l, v=1l,...,n (which lie in the half plane

Rew > 1/2 when lzvl < 1 for each v,) This being the case,

if we find & null vector 4 = (do,d ..,dn)T for the matrix

1°

[ n h

(28) [y, Sy, ... S",

. . . J
and effect the corresponding factorization

dO + d,w+ ,.. +4d wh
n

1 = dn(w—wl) PP (w-wn)

ve will have v, = (l—zv)-l or equivalently z = (wv-l)/wv ,
v=1l,...,n (after a suitable permutation of the indices.)
This third approach is equivalent to the pencil-of-functions
method of Jain and his coworkers, [5,6].

If y has the exact representation (3) and all compu-
tations are performed without error, these three approaches

all yield the same z_,'s, In practice, however, the system

v
order may be infinite (with n of the poles being dominant
and the influence of the others being small but nonzero),
the sampled yk‘s may be contaminated with noise, and finite
precision arithmetic is used to carry out the computations.

The accuracy of the computed z,'s thus depends on which of

\Y

13




Adnd

NG R
s At -

the three matrices (25), (26), (28) we use and on which

method we use to determine the approximate null vector.

14




3. PREPROCESSING OPERATORS

Ve shall now generalize the results of the previous
section soas to include preprocessing schemes other than

those based on the tail sum operator S. Let
(29) m=ry

be a linear seyuence-to-sequence transformation. We may
think of wu,y as being (column) vectors with I‘=[Yk£] being

a matrix so that

(30) wy =Ty = Yyo¥g + Y ¥ + Y0¥, *

We would like to impose restrictions on the Yke's which will
insure that I is defined on the whole set of rapidly decaying

transient sequences
(31) T = ( )T 2 lim osup Jy, [VE <1}
= y01y15y2’... H P yk o

(When yi has the form (3) with a,# 0 and |zv| < 1 for each

vV=1,...,n we find

lim sup fy ]1/k = max Iz ,,...,]z | <1
k 1 n

so that J includes all of the transient sequences which
might arise from any stable finite order system we might
wish to study.) Moreover, to be useful as a preprocessing
scheme we must insist that I' be pole preserving in the sense

that z, 1s a system pole associated with w =Ty if and only




k

if z, is also a system pole associated with y, and this

serves to further restrict the Ykels‘ The resulting
sequence-to-sequence mappings are characterized by the

following

s

THEOREM 1: A necessary and sufficient condition for T
to be a linear pole preserving sequence-to-sequence mapping

of J into Y is that T have the form

2

(32) T = Y(E) = Y. + Y.E + Y,ET + .

0 1

(33) 1y, = Yo¥p * YY1 t Yo¥peo to--e 0 K=0,1,2,...
wnere
(34)  Y(2) = vo+¥ z + Y,2° + ...
0 "1 2
is a zero free analytic function on the unit disc |z| <1
Before proving this result, we point out that (32)-(33)

imply that T has the banded upper triangular matrix

representation

Yo 1 Y2 *i

(35) r = Yo Y1 ;
YO . ?4

and since the radius of convergence, R, of (34) is given by 3

16
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the Cauchy-Hadamard formula

(36) R71- 1im sup lYk|l/k ’

the analyticity of v(z) on |z| < 1 is equivalent to the

requirement

(37) 1lim sup IYkll/k <1

The hypothesis that v(z) be zero free is not easily trans-
lated into a simple condition on the Yk's‘.
To illustrate the theorem, we first note that the

tail sum operator S of (22) has the representation

(38) S:Y(E):I+E+E2+,,,

where
(39) v(z) = 1+z+22+ .. = 1/(1-2)

is clearly analytic and zero free on |z] < 1. Likewise,

the local smoothing scheme

(40) u + ...

k- Yk t Yk+1 * YreN-1

which results from the operator

(41) S,, = YN(E) =1 + E + E2+ el + g1
N N
with
I_ q
(42) vy(z) =1+ 2z +2° = ...+ 200 = (1-2Y)/(1-2)

17




meets the hypotheses of the theorem. On the other hand, the

weighted smoothing scheme

U = Yt 2Yp + 3o

corresponds to the operator

(43) = Y(E) =1 + 2E + 3E2

which maps J into I, but since

v(z) = 1 + 2z + 32°

has the roots (-1 + 4/~2 )/3 which lie in the unit disc, this
map is not always pole-preserving,

We shall now state and prove three lemmas which collec-
tively serve to establish the above theorem., The first
focuses on the banded upper triangular structure (35) of T,
the second on the growth condition (37), and the third on

the requirement that Y(z) be zero free in the unit disc.

LEMMA 1. Let T be a linear operator which maps the
space of transients O into itself. The following are
equivalent:

(i) c¢(E)ry = O whenever y € J and c(z) is a

polynomial such that c(E)y = 0, (i.e., if Yy
has the representation (3) for some choice of the

a,'s and zv's, then u, = Fyk must have the repre-

18
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*
sentation (23) for some choice of the a,'s

with the z,'s being the same.),

(ii) I' has the representation of (32)-(35),

(iii) I' commutes with the shift operator E.

Proof. Assuming (i) we see that since

(E -.ZI) (1)2522,..- ) (010109.-- )

we must also have

(E”ZI) r(liz’zz,o-- ) (090:0,... )

for each choice of z with |z] < 1 . Using the general

representation (30) for the linear operator I' we find

(E-2I) T (1,2,2°%,... )

X i - PR ¢
=(E-zI)( ZYoez DDV Do VapZ o)
£=0 £=0

£=0
[o'e}
oo
=(Yyot ¢ ¢
10 2?3 (Yy,7Y0p-1)27 Yoot 3 (Yopvy, )2 se-s )
=1 =
so that the power series
=< ¢
Yko + (Ykg—Yk-—l,e—l)Z b k:1’2s.-.
=1

must vanish for every choice of z with |z] < 1 . It follows

that ?

19




Yko =
Yk& = Yk—l,&—-l » k,g = 1’2,... ’

i.e., that T has the representation (35) or equivalently
(32) so that (i) implies (ii).

When T = Y(E) has the representation of (32)-(33) we
clearly have

TEYy = TYk41 = YoYue1tV1Yks2t Y23+, . BT Yo k=0, 1,

for each y € J so that (ii) implies (iii). Moreover, if
I commutes with E, then T also commutes with the polynomial

c(E) in E so that
¢c(E) T y=Tc(E)y=To0o=0
whenever ¢(E) y = 0, i.e., (iii) implies (i ).

LEMMA 2, TLet T be an operator having the representation
of (32) - (33). 1In order that I' map J into J it is both
necessary and sufficient that (37) hold (or equivalently,

that (34) be analytic on the disc |z]| < 1.)

Proof. Assume first that T maps J into J . The series
(34) which represents the first component of F(l,z,zz,... )
must then converge whenever (1,2,22,... y €T, i.e.,
whenever |z| < 1 . Thus (34) is analytic on the unit disc
so that the Cauchy-Hadamard formula (36) must produce a

radius of convergence R > 1, and (37) holds.
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Conversely, assume that (37) holds and that y €J is

given so that

(44) 1lim sup ,ykll/k <

Since (44) holds, there exist constants A > 0, 0 < a <1

such that
(45) Iyl <4 a®, k=0,1,2,...,

and since (37) also holds there exist ccnstants B > O,

1

0 < B < a ~ such that

(46) v, | < B g¥, k=0,1,2,...

Using (45) -~ (46) and the fact that O < aB < 1 we see that
the series (33) which is used for the k-th component of

'y is majorized by

ey =Yyt Yok 1+ YoYiesot - |

0 k 1 k+1 2. k+2

< BB” * AG®+BB”  Aa

= ABA® / (1-28),

and is thus convergent, k=0,1.2,... . Thus F'y is well

defined, and

Il/k:

lim sup] Fykll/k < lim supIABak/(l—aB) a <1

so that Ty € J . |
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NOTE., A slight extension of the above argument shows

that the operator of (32) - (33) will map

WV 2

T . 1/k
T = {(yo,yl,yz,... )T : lim suplykl /k < R}
into itself provided that
lim sup IYkll/k < 1/R,

i.e., provided y(z) is analytic on the disc lz| <R,

O < R<®@™, The case R=1l is covered by the lemma.

When yv(z) is analytic on the unit disc and |z]| < 1 we
have

Y(B) (1,2,22,... ) = v(z) (1,2,2%,... ) ,

and we thereby see that Y(E) will arnihilate the power
sequence associated with the pole z=z if zq is a root of

v(z). More generally, su,pose that y has the representation

= k
(47) yk = Z a\)Zv ) k=0,1,2,,..
v=1
where
@
(48) Z |avl <
V=1

and where

(49) |zv| < R <1 for cach v=1,2,...

We then find




tim sup |y, 1M¥ <

A
ju—
(")
3
n
c
el
P
'
<
N
<
=
)
fo]
~
x

I

o
A
-

so that y € J7 . Moreover, when y(z) is aralytic on the

unit disc we have

(0 0} (oo o0

k+¢ k

Y(E)yk= E Y'g E avzb = Z Y(Zv)avzv s k=0,1,2,...,
£=0 v=1 v=1

and we thereby conclude that each pole z,, associated with
y will also be a pole of w = Y(E)y provided that v(z) has

no zeros in the unit disc,

The above arguments show that when Y(z) is analytic
and zero free on the unit disc, then Y(E) is a pole pre-
serving mapping of the set of sequences y of the form (47)-
(49) into itself, Although such transients are the ones
most likely to be met in practice, for the sake of com-
pleteness we shall extend the argument so as to include
the somewhat larger class J°. In so doing, we shall find

it convenient to use tllie notation

2
y(z) = Yo * ¥y2 + ¥yz© o+

for 1he generating function associated wiih a given scequence

23
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y = (yo’yliyz.v-.. )’ with

-1 -1 -2
)

y(z = Yo *t Y2 0t ¥z o+ ...

being the corresponding z - transform. Of course, when y
has the representation (47) - (49) we find
o

© ooy
y(z—l)'z Z 27K E a,\)z\)k =z - Z av/(z—zv)
k=0 v=1

v=1

so that z,,2 are the poles of y(z_l). More generally,

2’...
wve shall say that the map T is pole preserving on J°

provided that for every choice of y € J the z - transform
u(z_l) of u =Ty has exactly the same poles as the z-transform

y(z_l) of y. The relationship between these poles is made

precise in the following

LEMMA 3. Let y, Y be sequences with

|1/k <1

(50) 1lim suplyk|1/k =R <1, lim suply,
and let u = Y(E) y, v = y(E)Y, i.e.,

Y=Y kP Y Y1 Y2 YRka2 T o0 k=0,1,2,...

V=Y oYty Vi1 P 2 Va2t - 0 k=0,1,2,...

Then the generating functions v(z), Yv(z) are analytic for
|z] < 1, the z-transforms y(z_l), u(z‘l) are analytic for

|z] > R, and the identity

u(z™d) = y(z).y(z71) - v(z) + v(0)

24




holds in the annulus R < |z| < 1 and thus in the common

domain of analyticity of these four functions. In parti-
cular, when Y is zero free in the unit disc, the poles of
u(z—l) (wvhich must lie in the disc |z] < R) must coincide

with the poles of y(z-l).

Proof. By using the Cauchy-Hadamard formula in
conjunction with (50) and the note following Lemma 2 we
infer that y(z), u(z) are analytic for |z[ < 1/R and that
v(z), v(z) are analytic for |z| < 1. For z in the annulus

R < Izl < 1 we then have

-1 = =, K e, &
Y(z)-y(z"")+v(0)= Y} 3 AN ST IRE D DI R %
k=0 ¢=0 k=0

) ; ~(2-k)
= z: kaez + 2: kagz
k>¢ £>k

cc o0 e oc v
=2 ( ZYa)rr T T k)
v=0 £=0 v=0 k=0

o o) cc
= Z \\)ZV + E u,, Z—v
V=0 v=0
= v(z) + u(z—l) 0

Taken together, these three lemmas give the previously
stated theorem which provides a simple characterization for
the pole prescrving mappings we would like to use in a

preprocessing scheme. The discussion of section 2 can now

[\
i




be extended at once to the case where the tail sum operator
(38) is replaced by any operator I'= y(E) for which v(z) is

analytic and zero free on the unit disc.
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4, NOISE SUPPRESSION
Let a # 0 and z be given with |z] < 1, and let
(51) Vk = azk + Ck, k=0,1,2,...

where €02€,7€5>... are independent random variables with

common mean
<€ > =0, k=0,1,2,...

and common variance

< € >202’ k20’1,2,..-

Let
I = Y(E) = vy +VY_E+Y Ez+
0 1 2

be a preprocessing operator for which

_ 2 2 2 2
(52) v° = |Y0| + |Y1' + |Y2| + ...

is finite, and let v =T'w so that

k

(53) Vk = aY(Z)Z =+ 6k’ k=0,1,2,...

where

1s a random variable with mean
oo

C

53 z — —- ‘= 2

(55) \6k> =< ¥ Y€ = 3 Y, <€ ,.> = 0, k=0,1,2....
£=0 £=0

1




and variance

(o) o
2 - -
(56) <l6kl >=< 2: YBYu€k+8ek+u>= 2: YzYu<ck+£ek+u>
¢,u=0 ¢,u=0

|2 02=Y202, k=0,1,2,...

The processed noise 60, )

1’ 62,... is correlated with
— m —
(57) <6k6k+p>= ¥ Y YuChas €hrpru
8, U.:O

— - - 2 ~
—(YbYO+YP+1Y1 + Yp+2Y2+"')° , k,p=0,1,2,...

We would like to develop some quantitative measure of
the tendency of the preprocessing scheme to suppress the

noise, We shall use lazkl2 2as a measure of the signal

2
k

a corresponding measure of the noise. Analogously,

present in the k-th component of w with <e€’> = 02 being

laY(z)zkl2 gives a measure of the signal in the k-th
component of v = TI'w with <|6k|2> = Y202 being the
corresponding measure of the noise. The preproccssing

scheme T thus improves the k-th component signal-to-noise

ratio by the factor

K(2,, 22
lax}z);lé//gv T |v(2)1%/y?
az (o)

Since this ratio is independent of k, we sce that
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(58) glz) = |v(2)|?/¥® = |YO+Y12+Y2Z2+ |2
1241y, 12

3
Ivo I+ vy 154 Ty, 5+

provides us with a quantitative measure of the tendancy of

I to enhance the signal-to-noise ratio for a power

sequence based on the pole z . VWhen g(z) > 1, the noise

is suppressed, and we refer to the set
(59) ClY ={z€cC: |z] <1 and g(z) > 1}

as the region of pole amplification associated with
r = v(E).

Suppose now that

n
k
(60) Vi = 2: a,z,, + €., k=0,1.2,...
v=1
where aV£O and |zv| <1 for v=1l,..., n, where Zyseers 2,
are distinct, and where €p2€y2€p0. .. aTe again independent

random variables with zero mean and common variance O
If we compute

n

% (61) v, = Y(E)w, = ¥ avy(zv)zj‘+ 6,5 k=0,1,2,...

;; V=1

E{ (with 60,61,62,... again given by (54) ) we will expect to

;? enhance the pole z, relative to the noise provided that

o z, lies within the region of amplification (I, with the
degree of enhancement depending on the size of g(zv). In
practice, the poles Zyseees Zp are unknown. but we often
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have some a priori knowledge of the portion of the unit
disc in which they are most likely to be found. 1In such
situations we might reasonably select a preprocessing
scheme which is specifically designed for signals of the
type we expect to process, i.e., we choose I' = Y(E) so as
to make g(z) as large as possible in the region of the

unit circle where we expect to find z z_ . An upper

1’..., n

bound on the possible size of g(z) is provided by

THEOREM 2. Let the operator r = Y(E) satisfy (32) -
(34), (37) with (52) being finite and let g(z) be the
corresponding signal-to-noise amplification factor (58).

Then

2
(62) glzy) < 1/(1-]z41%), |25 <1
with equality holding if and only if
(63) v(z) = a/(1-z5z), |z| <1

where a is a nonzero constant so that v(z) has a simple
pole at the point of inversion z = l/ib of Zg relative to

the unit circle and
(64) Ty, = aly 42y, 4220y . o4 ), k=0,1,2
k = AVYTZ0" Yk+1T %0 k42T cer M2 BV Ss. e

Proof. Using Cauchy's inequality we find
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(63) Iv(2)1? = | 3§ v, 2*I? *
k=0
[} [oe]
< X Ivl? v %2
k=0 k=0
- Y3/(1-121?)

with equality holding if and only if ¥ is a scalar multiple

2 ),

of the power sequence (1,2,z°,... In conjunction with

(58) this gives (62) - (64). |

The bound (62) provides a natural limit to the signal-

to-noise amplification we can achieve tnrough the use of
a preprocessing scheme. When the sampling interval T is

lies deep within the unit

2 3
Ixd
v 2Ty 2

chosen so large that the pole z,,

circle, 1i.e., z, = O, the successive powers z
decay so rapidly that substantial noise suppression is

impossible and we find

2

glz) < 1/(1-12,]1%) = 1

On the other hand, if T 15 so small thati z,, liss near the
rim of the unit circle, i.e., lzvl < 1 but Izvl = 1, then

the maximum of

g(z,) = 1/0-1z 1%) = 1/{2(1-]2,])]

w1ll be large and a suitable preprocessing scheme can

achieve a substantial s=uppression of the noise cf. Fig.1.
PF ) g
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Suppose now that we have some a priori knowledge tuat

the poles Zyseans z, which we seek all lie in some subset
@A of the unit disc, e.g., if the samplinginterval T is

small we expect to find Zyreeos zn in a tight cluster near

z=1 so we might take (L to be the lens shaped set
(66) A ={z € C: |z|] <1 and |z-1] < ¢}

obtained by intersecting the unit disc with the disc of

radius p which is centered at z=1. Once (I is chosen, we %i
would like to determine a corresponding preprocessing ;
operator T = Y(E) which is optimal in the sense that the }

minimum value taken by g(z) as z ranges over ( (i.e., the

smallest signal-to-noise amplification at any pole location

a9 DA

we might possibly encounter) is as large as possible. Wnen
a :izol, the optimal operator T is given by (63) - (64).
In more realistic situaticns such as (66), tnere is no
known procedure for constructing an optimal T, XNevertheless,
we can develop good if not best preprocessors for certain
natural choices of ( and we shall now proceed to show how
this is done,

Suppose first that (L is given by (66) with ¢ being small.
When v(z) is given by (39) the contour lines of |Y(z)|2 are
circles centered at z=1 with lY(z)|2 > c_2 when 0 < |z-1|< ¢.
We might thus expect the tail sum operator S = Y(E) of (38)

to be an ideal choice. Unfortunately, the corresponding
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Y2 of (52) is not finite when Y(z) is given by (39), so we
are forced to consider related approximations,

One very natural approximation is obtained by simply
truncating the infinite series (39) so as to obtain
(42) with N being a positive integer. The corresponding
preprocessing scheme u = Y(E)y is then the local averaging
procedure of (40), and the signal-to-noise enhancement

factor is given by
(67) &(z) = |14z+ ... +2012/N = [1-2N1%/(11-21%N)

By using Cauchy's inequality we see that this operator 1is
optimal in the sense that it maximizes

N-1,2
g(1) = IYO+Y12+ .o +\’N_lz l

2 3
yo 5+ Iy 1%+ Lo +lvy 4

12

as Y(z) ranges over the set of all (nonzero) polynomials

having degree less than N, If we let

¢, = exp(i - 2mk/N), k=1,2,..., N-1, (i%= -1)

denote the N-th roots of unity other than z=1, we may write

(67) in the form

2 2
g(Z) = Iz-gll IZ—QN——].I /N

and thereby conclude that the ccntour lines of g(z) coincide

with ihe equipotentials of the two dimensional field wnich




results when unit charges are placed at z = gl,gz,...,
in the plane. This helps us visuvalize the region of
amplification when N is small, cf, Fig. 2, For large N
we neglect zN in (67) to see that the region of amplifi-
cation is essentially the lens shaped set (66) which results

N—l/2 and that g(z) increases from approx-

wvhen we take p =
imately 1 to its maximum value N as the distance from z to
1 decreases from N 1/2 to 0. In this way we see that a
large signal-to-noise amplification is possible only when
N is large in which case the corresponding region of pole
amplification is small, Thus N should be chosen in
conjunction with the sampling interval T, i.e., when T is
small the z,,'s are tightly clustered near z=1 and a large
value of N is appropriate, cf, Fiy, 1 and Fig. 3

A second natural approximation to (39) is obtained by

slightly shifting the pole z=1 of Yy to the nearby point

z =R > 1 so as to make
2,.2 -
(68) v(z) =1+ 2z/R + 2°/R° + ... = (1-z/R)
In this case u = Y(E)y is given by
(69) u, = + /R + vy /R2 +
k - Yx T Ykn Yk+2

and

(70) g(z) = (R°-1)/|z-R|? .

The contour lines of g(z) are circles ceniered at z=R
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with g(z) = K on the circle wnere

l2-R| = [(R%-1)/K]}/2

In particular, the maximum signal-to-noise enhancement is
g(l) = (R+1)/(R-1) = 2/(R-1)

and the region of amplification is that portion of the unit

disc [z‘ < 1 which lies within the circle

’Z—RI = (R2—1)1/2 .

Again we observe a fundamental trade off between the size
of the region of amplification and the maximum possible g,

cf. Fig, 4.




CONSTRUCTING NOISE SUPPRESSING PREPROCESSING OPERATORS

wi

In many cases of practical importance we encounter a
system which exhibits various modes of oscillation with
frequencies which are more or less integral multiples of
some fundamental frequency and with all of these modes
being similarly damped (cf. Appendix 1), i.e., the s,'s
of (1) are more or less miformly spaced along some line
Res = -a in the left half plane and the corresponding z,,'s
of (4) are more or less uniformly spaced around the circle
|z] = exp(-aT) < 1 . To aid us in the numerical extraction

of the first few z_,'s we would like to use a preprocessing

Y

scheme which is optimal on some corresponding sector
(71) Q:iz:reie:p<r<1,_e<e<e}

of some annulus of the unit circle with the parameters
pand ® (0 < p <1 and 0 < @ < 1) being determined by the
damping coefficient a, the fundamental frequency, the
sampling interval, and the numver of poles we are trying

to find. Tue preprocessing schemes of (40) and (69) (which
are designed for the region (66) ) tend to enhance the

lowest modes but damp out any others. We must thus devise

a preprocessing scheme I' = Y(E) for a region of the form(71).

We now describe one way in which this can be done.

¥e first observe that the function
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2 2
R R
(72) Y*(z) = = - -
22 2Rz cos® +R2 (z-RelB)(z-Re'lgs

is analytic inside the circle |[z] = R on which its two
conjugate poles z = R exp(+ i8) are found. For |z| < R

and 0 < 8 < ™ we may write

.

it

1 i6 e-19
v*(z) - P -
2i sin® ( 1-(z/R)e 1-(z/R)e

i

D o @)
10 i -18 -i6
. 1 { el Z (eleZ/R)k—e 1 Z(e 1 Z/R)k},
21 sin®8 k=0 k=0

and after a bit of simplification this yields the series

representation 1
(73) y*(z) =1, 2R=2 . 28R 2% . }

sinéd R sinf R ]
for (72).

To obtain our desired preprocessing operator we shall
now select a number p such RJ’ GJ pairs with R3 > 1 and
0 < ej < m, and then form the product of the corresponding

terms (72), i.e., we take

R 2
p i 2
(74) v(z) = A 5 = YatY 24Y,z 4. ..
TT’ 22—2Rjzcosej+RJ‘ 0 1 2

j=1

From (73) - (74) we see that v(z) has the alternative

representation
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p sin26. sin36. 22
(75) y(z)zﬂ{1+———l 4 —1 . 2+...} ,
. sin 8. R. sin 6. R.
J=1 J J J J
so that if we define
(1) sin291 z sin361 22
Y i(z) =1+ —= — + S IR S
sin 91 R1 sin 91 R1
and successively compute
2
sin28 z sin30, z
Y(g)(Z) - Y(e—l)(z).{ 1+ ————-‘ g « ] ga_—z +.-.},
sin 68 R& sin Bg Rg

for ¢=2,3,..., p the resulting Y(p)(z) will coincide with
(75) and thus (74). Ve may thus numerically obtain the

coefficients YO’YI’YZ”" of (74) by using the recursion

scheme
(1)_ sin(k+1)6, 1 _
Yy = sin 6, R kK ? k=0,1,2,...
1
(76) (i+1)
k sin(j+1)#6 1
Y(g)z E Y(e—l). Z . T k:O,l,Z,...,
k . k-j sin © R,J
J'—'—O 2 A 82233:---3p
with

(77) Yk = Yl(‘p), k-——o,l,z)-..

Once Yo?YysYps... are known, we use the corresponding

operalor




r=v,+ vE+ Y2E2 4 ... f

for our preprocessing scheme, i.e., we take

]
|

Up = Yo¥x t Yi¥i4a f YoVge2 -

From (74) we see that v(z) will be analytic on the disc

|z] < R when

R = min 1R1,..., Rpl >1 .

By using the Cauchy-Hadamard formula (36) we then see that

there are constants C > 0, 0 < q < 1 such that the

S o 2t iR e e

coefficients YorYyrYpsee. ve compute in (79)-(80) will

satisfy the bound

lv, | < ¢ - d¥ x=0,2,2,... .

We thereby infer that the sum

oo cO

2 2
Y Iy l? < % led®)? = c/(1-¢%)
k=0 k=0

is finite so that the corresponding g(z) of (58) is well
defined. Our goal is to determine the pole location g
parameters Rj’ej’ j=l,..., p which result in a g(z) which

is uniformly large on all of (A in the sense that
min | g(z) : z € @ |

is as large as possible. Since g(z) is the modulus of an
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analytic function which is zero free on (L , this is
equivalent to maximizing the minimum value taken by g(z)
as z ranges over the boundary of Q

Using a digital computer in an interactive mode
(vhere it is possible to perturb the pole location parameters
Rj’ ej and immediately see the effect on the contour lines
of g(z) we have been able to design good if not best
preprocessing operators I = Y(E) for the region (71), cf.
Fig. 5. More work is needed in order to systematize this

procedure, however.
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6. ALTERNATIVE METHODS FOR COMPUTING THE NULL VECTOR

At the heart of transient analysis lies the problem
of extracting a suitable null vector ¢ = (co,cl,..., cn)
for the data matrix Y of (11). As we have seen, ¢ can
be obtained alternatively as a null vector of certain
related matrices such as (25), (26) or, more generally,
as a null vector of the corresponding matrices which result
when the tail sum operator S is replaced by some other
preprocessing operator ' chosen for its noise suppressing
properties., We shall now describe a general procedure of
this type in the hopes of obtaining a more robust scheme
for computing ¢ and thereby for computing Zyreees 2 .

Indeed, suppose that we are given the transient
sequence Yy = (yo,yl,yz,...‘) and the preprocessing
operators Pi = Yi(E), i=0,1,..., m. We shall numerically
generate the sequences Fiy, i=0,1,..., m and then

assemble the matrix

[ ul
Povo o1+ - - To¥n
(78) M =|TYo T2 - - - Ty,

NYe TMo¥y - - - My

Using a singular value decomposition of M or an eigenvalue
decomposition of,kF,& as described in section 1 we shall

compute a null vector e = (c c_) for Y4 and then

0’17+ ©p
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take 2

1?0 Zg to be the roots which result from the
corresponding factorization (6). Of course, tnis scheme
will be successful only if the operators are chosen in
such a manner that }y has the same null space as the data
matrix Y . This imposes certain constraints on the
operators PO’ Pl’ e Pm which we shall now explore in
some detail.

Let Yo(z), Yl(z),..., Ym(z) be analytic on the unit
disc |z| < 1 . Ve shall say that these functions satisfy

the Haar condition provided that no linear combination
(79)  Yx(2) = byvo(z) + by, (2) + ... + b v (2)

of these functions has more than m zeros in Izl < 1 unless

b

b bm all vanish., After illustrating this

O’ 1’ RIS )
concept with several examples we shall show that this is
exactly the property which is needed in order to insure

that 4 and Y share the same null space.

Example 1. The functions

Y-(Z):ZJ, i:O,ly.-.,m

satisfy the Haar condition on the unit disc since (79)

reduces to the polynomial

_ m
Yu(z) = by + byz + ... + b2

which has at most m zeros unless b, = b1 = ... = b_= 0,

In this case
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- pl, _
Piyj = E Yi = Yisj

so that)b is the matrix which results when all but the
first m+l rows of Y are deleted.
Example 2. When Y(z) is analytic and zero free on

the unit disc the functions
(80) v,(z) =2 y(z) , i=0,1,..., m

satisfy the Haar condition there since (79) reduces to the

product
Ye(2) = v(z) . [bo + blz + ...+ bmzm]
which has at most m zeros unless bO:bl: ce. = bm = 0. In

this case
i
ry; =E Y(E)yj = Y(E)yi+j

so tnat}y is obtained by generalizing (25) to the case
vhere SP is replaced by Y(E).

Example 3. Again let Y(z) be analytic on the unit
disc and assume ithat yv(z) is also one-~to-one, i.e., that

Y(z) = Y(z') only when z = z' , If
(81) ¥,(2) = v(z)' , i=0,1,..., m
then (79) reduces to the polynomial

Y*(z) = bO +b1y(z) + b2Y(2)2 + .., 4 me(z)m
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of degree m in v(z). Since v(z) is one-to-one, v, ,(z) will

have at most m zeros unless bo =b = bm = 0, and

1 =

so the Haar condition is satisfied once again. In this case

r iyj = Y(E)iyJ‘

so that M is obtained by generalizing (26) to the case
where S is replaced by Y(E).

Example 4. Let CO’ Cl""’ Cm be distinct complex

numbers with 'Ci' < 1 for each 1, and let

(82) v;(z) = 1/(0- C, 2) , i=0,1,..., m .

Ve may express the corresponding expression (79) in the form

Yy(2) bo/(l—zOz) + e+ bm/(l—zmz)

m
do + dlz + ... + dmz

(1-Cyz) (1-Cy2). .. (1-C 2)

with d., dl""’ dm depending linearly on bgy,b;,..., b .
Clearly v, (z) has at most m zeros unless dozdlz ce. = dm =0

in which case b =bm=0 also, so the Yi(z)‘s satisfy

O=b1: cee
the Haar condition on the unit disc. Using Theorem 2 we

see that the operator

f‘i = Y‘i(E) =1+ ZiE + fi2E2 +

provides the maximum possible improvement in the signal-
to-noise ratio for a pole at z=§i, and thus such a pole will

be strongly represented in the i-th row of M , i=0,1,..., m.
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| Using this.}Y to determine the null vector ¢ may be preferable

| to using (25), (26), or the generalization of Examples 2, 3
above when the system poles are well separated and it is 5
difficult or impossible to find a single operator I" which

' has a region of amplification containing all of these poles. J

b o

Example 5. Again let QO’ Ql,..., gm be distinct

!
LY

4
N

complex numbers withIQil < 1 for each 1 and let
z- C.
Yi(Z) = ﬁ —_—d ’ i=0,],..., m
it 878
be the Lagrange interpolating polynomials of degree m which

are based on the m+l points CO’ gl,...,gm so that

Yi(Cj)=S1 if i=j = 0,1,..., m
0 if i#3 .
Since YO(Z), Yl(z), .o Ym(z) are linearly independent
polynomials of degree m, the Haar condition is satisfied.
The application of the operator rg = Yi(E) to a given
sequence y = (yo,yl,... ) can be effected by successively
applying the m operators E - QJI, j#i , and then
suitably scaling the resulting sequence,

We note that in the special case where y has the
representation (3), where m=n-1, and where we take

gO:zl’ Clzzz,..., Qm:zn, wve find that the elements of

M are given by
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n

3 ain(zV)va = a. z. 3 .

i+1 “1+1
v=1

F‘iyj

ThusZﬁ is a row scaled version of the Vandermonde matrix

ased on 2 .,,... z_ .
bas n 1’ s 2

THEQOREM 3. Let Pi = Yi(E) vhere Yi(z) is analytic for
lz] <1, i=0,1,..., m and assume that Yo(z), Yl(Z),...,Ym(Z)
satisfy the Haar condition on tne unit disc., Let
y = (yo,yl,yz.... ) be a transient sequence having the
representation (3) with av#O and IzV] < 1 for each v=l,..., n,

with z PN being distinct, and with n < m+l. Then

l’
_ T . x Y

c = (CO’Cl""’ cn) is a null vector of the matrix of

(78) if and only if ¢ is also a null vector of the data

matrix Y of (11).

Proof. Using (3) we see that for any choice of

¢_ we have
n

CO, 17+

n
n k
(83) c02%0+cI2&1+. +c.5 (e otc E+...+c E )Yi(E) Sa,z,

E:a CoTC 2yt He 2 Ty (z.).

\’!

Now if ¢ is a2 null vector of J , the factorization (6) must

hold so
Cohlo+clﬁll+...+cnﬁln = O’ i:o’l’_..’ m

and thus e 1s alsgso a null vector of)ﬁ . Conversely, if ¢
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is a null vector of MY the left side of (&3) vanishes for
each 1i=0,1,..., m ard therefore

n
(8) Ya,(cyte z +.. ‘+cnzvn)[bOYO(zv)+blY1(zv)+' -.#+b v, (2,)]=0
v=1

for every choice of bo, bl""’ bm. Since YO(Z)’Yl(Z)""’
vm(z) satisfy the Haar condition, we can choose the bi's
so as to make (79) interpolate any given m+l points, and

in particular (since m > n-1) we can choose these coefficients

so as to make

(85) byYolz,)+b vy (2,)+...+b v (z,)

+Cc.,2z2_ -+. +C

= av(cO 12T T2y

Upon substituting (85) into (84) we find

a Ly (2
v lav(co+clzv+...+cnzv‘)| =0
v=1
so that
Co¥itC1Yit1t - Y i4n

n .
n .
= E:a\)(co+clzv+...+cnzV )zv1:0,1:0,1,.
v=]

i.e., e 1s a null vector of Y . |

The ideas leading to the construction of (28) lead to
the somewhat more general result which contains Theorem 3

as a special case,




THEOREM 4. Let r= Yi(E) where Yj(z) is analytic for
lz] <1, i=0,1,..., m and assume that Yo(z), Yl(z), ceos
Ym(z) satisfy the Haar condition on the unit disc. Let
Aj = GJ(E) vhere 6j(z) is analytic for |z| <1, j=0,1,...n
and assume that 60(z), 61(2), eees 6n(z) also satisfy the
Haar condition on the unit disc. Let y be a transient
sequence having the representation (3) with av# 0 and
Izvl <1 for v=1,...,n , with Zyseees 2, being distinct,

and with n < m+l. Then d=(d ,d ,..., 4 )7 is a null

vector of the (m+1) x (n+l) matrix

Fofo¥o Tof1%0 - - - MoluYo
Mdo¥o MByyo - - - M8y
(86) M =

_rmAOyO r‘mAIyO ot r‘mAnyO

if and only if the corresponding characteristic function

(87) ql(z) = d0 60(2) + dlél(z) + ... + dnén(z)

vanishes at Zyseees 2 and i1s elsewhere nonzero for |z| < 1.
Proof. Using the representation (3) we see that

(88) b'Md= Fa [bov,(z,)+b v, (z,)+...+b ¥ (z,)]

v=1
[dobo(zv)+d161(zv)+...+dn6n(zv)]
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. T T
for every choice of b =(bo,b1,..., bm) and d _(do,dl,...,dn).

If d is chosen so that (87) has z z as roots, then

REERY
the left side of (88) must vanish for every choice of b
(and in particular for the choice b = Md), and we conclude
that d is a null vector of Y.

Conversely, suppose that d#0 is a null vector of M
so that the right hand side of (88) vanishes for each
choice of b, Since Yo(z), Yl(z)""’ Ym(z) satisfy the

Haar condition and n < m+l it is possible to choose b so

that

boYo(2)+b v, (2)+. .. 4b v (2)

=av[d060(%)+d161(§)+...+dn6n(g)]

when v=1,..., n. Jt then follows that

n
2
Ylaylags (z,)+d 6, (2,)+. . .44 6 (2,)] |7 =0
v=1
and thus (87) must vanish at Zyseons 2. Moreover, since

éo(z), 6(z),..., én(z) also satisfy the Haar condition, the
characteristic function (87) has no other zeros in the

unit disc. [

Example 6. Let
Yi(z) = z', i=0,1,..., m

and let
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6,(z) = v(z)d, 5 =0,1,..., n

where Y(z) is analytic and one-to-one for |z| < 1 . As
noted in Examples 1,3 above the Yi(z)'s and 6j(z)'s satisfy
the Haar condition on the unit disc. If we set ™= Y(E)

we may write

PI:YI(E) :El, i:o,l,..., m
AJ = Gj(E) =PJ, j:O,l,..., n
so that
r n
Yo Ty« - - r y01
n
Yy, ¥y, .., ™"
(89) M=

n
Y Ty - - Y |

We then conclude that @ = (d,., 4 s d_ ) is a null vector
] n

177
of M if and only if Y(zl),..., Y(zn) are the roots of the
polynomial dO + dlw +...+ dnwn, and since Y is one-to-one

the zv‘s are uniquely determined from 4. We observe that

(28) is the specialization of (89) to the case where

Y(z) = 1/(1-z) as used in Jain's analysis.

Example 7. Let

Yl(Z) = Zl, i:o,lg.--} m
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and let 60(2), 61(2),..., 6n(z) be the Chebyshev polynomials
which may be defined and computed by means of the three

term recursion

60(2) =1
(90) 61(2) = Z
6‘_](2) = 226j_1(z) - 6j_2(z), j=2,3,..., n .

Since Gj(z) is a polynomial of exact degree j, the Haar
condition is clearly satisfied. By using (90) we see that

it is possible to numerically generate the sequences
AJy=6J(E)y’ j=0,1,..., n
vhen y is given by successively computing

Ja)

1]

Oyl yl’ i:o,l,2,...

A i=o,1,2,...

1Yi T Yis1
Bi¥5 = 2851Y541 ~ 8505 150:12000s 22535000 B

¥hen y has the representation (3) and m > n-1, Zys.-a02)
will be the roots of the characteristic polynomial (87)
(which is now parametrized using the Chebyshev polynomials)

if and only if d = (dO’dl""’ dn)T is a null vector of the

matrix




7. THE PROBLEM OF EXTRANEOUS ROOTS 1

If in the process of numerically analyzing a given
transient y = (yo,yl.yz... ) of the form (3) we overestimate
the system order n, i.e., we carry out the calculations with
n replaced by some larger integer m=n+r, we obtain a

characteristic polynomial
m
(91) da(z) = dy + dyz + ...+ d 2, dm#O

of degree m > n. The following theorem provides several

equivalent characterizations of d(z) and shows that

Z.5...5 z_ are to be found among i1ts m roots.
1 n g
THEOREM 5. Let y = (yo,yl,yQ... ) have the repre-
sentation (3) with Ays.ees @) being nonzero and with Zyseees

z being distinct. Let o Cysenns <) be the coefficients
of the characteristic polynomial c(z) of (6) naving

. T ..
z Zz_ as its roots. Let d = (do’dl""’ dm) with

1)...: n
m=n+r and r > O, and let d(z) be the corresponding

polynomial ( 91). Then the following are equivalent:
(i) d is a (right) null vector for the data matrix

r ’

Yo Yy - - -3

(92) §_=|Y1 Y2 r - - Ymn)

(ii) 4(E) y = O,

L e s -




(111) d(z\)) = O for eaCh V:'l,.-o, n,

(iv) d(z) has the factorization

a(z) = (by + byz+ ... + b.2") - c(z)

for some choice of the coefficients bO’bl""’ br R

(v) dT lies in the row space of the (r+l1) x (m+l) matrix

(93) C =

(94) al =»f . cC

. T
for some choice of b = (bo, bisess br)'

Proof. From the identity
— m —_—
d(E)y = doy + ;Ey + ... + 4 E'y = jm a

we see that (i) and (ii) are equivalent. Next, since the

2 .
power sequences (l,zv,zv sees )y V=1,..., n are linearly

independent, and since

A k
d(E)yk = d(E) Zavzv =

v=] \Y

[a,d(z,)]z,*, k=0,1,2,...

- Ms

we see that (ii) holds if and only if a_,d(z,)= O for each
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V=1,..., n which is equivalent to (iii) and thus to (iv)
since the av's are nonzero. Finally, by equating the

coefficients of like powers of z in the identity

m r n
d0+dlz+...+dmz (b0+blz+...+brz )(co+clz+...+c z2)

n

boc(z) + blZC(Z)+ .. + brzrc(z)
we see that (iv) is equivalent to (v). |

NOTE. Since the conditions (iii), (iv), ard (v) above
do not depend upon any particular choice of y, these
equivalent conditions imply that (i) and (ii) must both
hold for every possible nondegenerate choice of y having
the form (3) with the same z,'s.

There are several ways which can be used to numerically

generate a family of vectors
T .
(95) di = (dIO’ dil,..., dim), 1’-'—-‘0,1,.-.’ T

of the form characterized in Theorem 5. We have already
observed that if y is a nondegenerate transient sequence
of the form (3) and we perform a singular value decom-
position of the data matrix Y with m = n+r, then r+l

of the singular values will be zero and the corresponding
right singular vectors will be null vectors of tjm and
thus serve as the di's . In some cases, it is convenient

to observe a number of transient sequences Yor¥yo-- e Y,
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wvhich result from different initial excitations of the same

underlying physical system. We can then numerically
generate a null vector 4, for the data matrix tjm of (92)
constructed using the i-th transient sequence Y
i=0,1,..., r. The same procedure can be used to generate

the di's when only one nondegenerate transient y is known

provided that we first generate suitable auxiliary
sequences y, = Piy) i=0,1,..., r from y by applying
preprocessing operators FO’ Pl""’ Pr' Indeed, in

principle, we can map any given nondegenerate transient

y having component (3) into an arbitrary transient u

having components

n
ukz Za*z s k=0,1,2,...
=1

(for the same underlying system) by using any preprocessing
operator T = Y(E) constructed from & function Y (z) which

is analytic on Izl < 1 and which interpolates the points

Y(Zv) =av*/av, \)'—"-1)...’ n

We would like to have some numerical procedure for

obtaining the system poles Zl”"’ z, from such a collection

of vectors ( 95). 1In principle, we could simply factor

each of the polynomials

m
(96) di(z) =d.. + dilz + ..+ dimz R

10 12031).-.’ r

AV /]
i
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and choose as z zn the roots which are common to all

1’0-.,
of them (assuming that the di's have been suitably
restricted so as to rule out the possibility of an extraneous

zero held in common by each of the polynomials (96) .) In

practice, however, the roots are subject to slight pertur-

bations due to noise, computer roundoff, etc., and instead
of finding n roots which are held in common by the poly-

nomials ( 96), we obtain n clusters of roots (near zl,...,

1 zn) which must be suitably averaged. For this reason, we
E would like to have some way to process the vectors

3 d dl’ cee dr so as to obtain directly a good estimate

o’
; of the coefficients ¢ = (co,

istic polynomial (6) having z

c . cn) of the character-

1’-.

122 2, @as roots, One very

E. nice scheme for doing this has been published recently by

Henderson [4], and we shall now expand upon his work,
Suppose then that we have been given a collection

z being common roots of each of the

1’0.-’

corresponding polynomials ( 96). By using Theorem 5-v on

; (95) with =z

a row-by-row basis we see that the matrix

d d “e dOm

00 01
d,9 d11 “ee dlm
(97)D= :
drO drl drmJ
T
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where B is an (r+1)x (r+1)square matrix

%50 Po1 ° bor

bio by - - - by
(99) B =

.brO brl st brrJ

(having rows which correspond to the polynomial factors

of Theorem 5-iv) and where C is the (r+l1) x (m+l) matrix
(93). Our goal is to extract the parameters CgrCy2erer €
of C directly from the matrix D.

Henderson's scheme for finding the ci's begins with
the use of Gaussian elimination with partial pivoting to
systematically zero out the elements of the matrix D having
indices i, j with i > j, i.e., those elements whieh lie
below the principle or left diagonal drawn through dOO’

d This process replaces D by the matrix LPD where

117 -+ -
P is obtained by suitably permuting tne rows of tne

(r+1) x (r+1) identity matrix and where L is an (r+1) x

(r+1) lower triangular matrix having 1's along its diagonal,
cf. [8, Chapter 1]. The application of P serves to permute
the rows of D and the subsequent application of L then serves

to carry out the elementary row operations which introduce

the desired zero structure., Henderson's scheme then

N
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continues by using additional row operations to zero out
those elements of LPD having indices i, j with j > i+m-r,

i.e., those elements which lie above the right diagonal

Y
¢
b
R
h
L,
:

drawn up through drm’ d . In this way the

r-l,m-1’
matrix LPD is replaced by the matrix ULPD where U is an

(r+1) x (r+1) upper triangular matrix having 1's along its

diagonal. The remaining matrix is then a row scaled

version of C, i.e.,
(100) ULPD = SC

where

e
S1
(101) S =

The i-th row of ULPD thus contains $;€0? S;Cyre--s S5C

in columns j= i, i+l,..., i+n, respectively, so after a

suitable normalization (or averaging process cf. [4,

p. 986]) Co» €ys---s € are obtained. Henderson has shown

that this procedure will always work when D has full rank.
A slightly more general (necessary and sufficient) condition T

for the success of this scheme is given in

THEOREM 6. Let the matrix D of ( 97) have rank

r+l-p where O < p < r , and assume that .D has the factori-

zation ( 93) with B as in ( 99) and with C as in ( 93) with .

cn£0 . Then there exist (r+1) x (r+1) matrices P,L,U,S with
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P being a permutation matrix, with L being a lower trian-
gular matrix with unit diagonal, with U being an upper
triangular matrix with unit diagonal, and with S being a
diagonal matrix such that (100) holds if and only if

exactly p columns of B vanish identically.

Proof: Suppose first that D, C, P, L, U, S are

related as in (100). By using ( 98) in (100) we see that
(ULPB - S) C =0

and since the last r+l columns of C are linearly independent

this implies that
(102) ULPB = S

By hypothesis, the matrices U, L, P are nonsingular so by
using ( 98) and (102) we see that D, B and S must have
exactly the same rank r+l-p and that B,S have the same
null space. In particular, exactly p of the diagonal
elements s; of S vanish, the corresponding p columns of

B must vanish, and (since the rank of B is r+l-p) no other
columns of B can vanish.

Conversely, assume that exactly p columns of B vanish
(with r+l1-p being the rank of both D and B ). By using
elementary row operations we can reduce B to an upper
triangular matrix having exactly p zeros along the principle

diagonal, i.e., we can find P,L such that LPB is an upper




|
3
a
:9
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triangular matrix with exactly p zero elements along the
diagonal., Since each zero cclumn of B is also a zero
column of (LP) . B, the p columns of LPB which contain the
p zero pivots must vanish. This being the case, elementary
row operations can be used to reduce LPB to a diagonal
matrix, i.e., we can find U,S such that (102) holds. Upon
multiplying (102) on the right by C and using ( 98) we

then obtain (100). |

NOTE: When D satisfies the conditions of the theorem
the matrices LPD and ULPD = SC will be obtained naturally
during the two stage elimination process. Indeed, suppose
that D can be factored in the form ( 98) and that CO# 0.

(If ¢, = O we see from (103) and ( 98) that the first

0
columns of C apnd D both vanish and that we could replace
our problem by one corresponding to a smaller value of r.)
Since D has rank r+l-p , when we use elementary row
operations to reduce D to upper echelon form we will end
up with exactly p zero rows. From ( 98) we see that each
row of D is some linear combination of the rows of C, and
since cO#O we see that each of the r+l-p nonzero rows of
our upper echelon matrix must have at least one nonzero
element among its first r+1 components, This being the
case we can rearrange the p zero rows so as to obtain the

matrix LPD which has zeros below the principle diagonal and

exactly p zeros (which lie in the p zero rows) along the
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principle diagonal. Thus we see that the first stage of the
elimination process can be carried out on any matrix D
having the factorization ( 98).

It is the second stage of the elimination process that
is dependent upon the auxiliary hypothesis that B has exactly
p zero columns. Indeed, if the (lower right) r,m - element
of LPD is nonzero, then by subtracting suitable multiples
of tihis row from the previous ones we can zero out the
upper most r elements of the last column. If this r,m -
element is zero, however, we can proceed if and only if the

whole last column of LPD is already filled with zeros. Since
LPD = (LPB) - C

we see that the last column of LPD will vanish if and only
if the last column of C is in the null space of LPB and
thus in the null space of B, i.e., if and only if the last
column of B vanishes. Analogous considerations apply at
subsequent stages of the back elimination process.

NOTE. If the matrix D has full rank (as is often the
case in practice) then the square matrix B from ( 98) must
also have full rank r+l so that p=0 and none of the columns
of B vanish., Theorem 6 then guarantees that D has the
factorization (100). Moreover, in this case S also has
full rank so that U,L,S are uniquely determined by D and

the pivoting strategy P,
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The following example has been constructed to show
that there are cases where the two stage elimination process
of Theorem 6 fails even when the roots Zy5...4 2, are
uniquely determined by d ., d&,..., a . Indeed, let

a,(z) = 1422424223 = 2(z- 1/2)(z-1)(z+i)

(z-0)(z-0)(z-1)(z+1)

|
N

+ Z

1

2, (2)
d2(z) = 1+2z+222+223+z4 = (2z-1)(2-1)(z-1)(z+i)

so that do(z), dl(z), d2(z) have only the roots z = + i in

common., In this case

120 1 0100
B = 001 C = 01010
121}, 00101
and
12120
D = BC = 00101
12221

The matrices B,D both have rank 2 so that p =1, but no
column of B vanishes. Upon carrying out the forward

elimination process on D we find

—

12120 12120 12120
00101 — 00101 00000

122 21 00101 00101
The back elimination fails, however, at the point wnere

we try to annihilate the 2 in the second-to-last column

of the first row.




8. CONCLUSIONS

! Our approach to the problem of transient analysis,

i.e,, the problem of extracting the system poles z z

| 1°°°* Z,
j from a sequence of samples y = (yo, yyo y2,...) involves a
‘ three stage process. We first assemble a data matrix by
applying certain sequence-to-sequence mappings to y

within the conceptual framework of Theorem 3 or Theorem 4.
We then compute a null vector for this data matrix by using
an eigenvalue analysis or a singular value decomposition

1 (wvith the former being less costly of computer storage and
the latter being somewhat better conditioned.) This null
vector then yields a characteristic function having Zyseees
| z as roots. Our scheme is a conceptually simple one which
admits significant new generalizations (such as those of
Examples 4 and 7 in Section 6), and it places the existing
algorithms within a common mathematical framework.

: The sequence-to-sequence mappings which lie at the

heart of our analysis can be effected quite simply on a
digital computer. We have analyzed the noise suppressing
properties of such mappings and identified a fundamental
trade off between the size and shape of the region of
amplification and the signal-to-noise ratio improvement

which can be achieved. The analysis clearly shows why Jain's
method is successful in filtering noise from the low order

poles when high sampling rates are used (i.e., when the first
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few z,'s are close to 1) and points the way to other pre-

v
processing schemes which will facilitate the computation
of the bigher order poles. Further noise reduction could
be achieved by using an adaptive scheme which first estimates
the system poles and then carefully computes them using
preprocessing operators which are optimal with respect to
the expected pole pattern,

Finally, the problem of estimating the system order n
and assessing the accuracy of the computed poles Zyseees 2
can also be solved by using pole preserving mappings. In
the absence of noise the given sequence y and the auxiliary
sequences y, = Yo(E)y, ¥, = Yl(E)y,..., y. = Yr(E)y will all

have exactly the same poles z z with n unknown, Ve

1,...:
can perform separate computations of n and the z,,'s using
each of the yk's, or we can compute approximate null

vectors do, d ’ dv for data matrices constructed using

17 -
Yor Yyr-o00 ¥y and then extract n and the zv's from the
dk's by using Henderson's method.

Many of these concepts have been tested by performing
the related computations on simple examples, and the results
have been most encouraging. A good deal more work will be

required, however, in order to perfect these ideas and to

incorporate them into efficient production codes.
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9. APPENDIX - THE DAMPED VIBRATING STRING

Problems in transient analysis arise when a physical
system reverberates in response to some initial excitation.
In principle, such a phenomenon can usually be modeled by
solving a certain boundary value problem (which characterizes ]
the system) subject to initial conditions which depend upon i
the form of the initial stimulus. In practice, such models .
can be analyzed in detail only in extremely simple situations
where there is unusual symmetry or low dimensionality. The
damped vibrating string provides us with a simple pnysical
phenomenon which nicely serves to illustrate the way a
problem in transient analysis arises and the inherent

difficulties associated with its solution.

Let u{x,t) give the (one dimensional) displacement

histgatnd

from the equilibrium position of the string at coordinate
x, 0 < x <L, at time ¢t > O. The motion of the string is

governed by the partial differential equation
(103) T‘uxx(x,t) = p utt(x,t) + % ut(x,t), 0<x<L, t>0 w

where T is the tension of the string, p is the linear mass
density, and % is the damping coefficient. We shall assume

the endpoints of the string are fixed by the boundary

N> o ana: X d e b
(TR ATEL Y SHR D
e v ol o nA . e . -

conditions

(104) wu(0,t) = u(L,t) =0, t > 0,




and that some external stimulus has subjected the string to

the initial displacement and velocity

(105) u(x,0) = uo(x), 0<x<L
ut(x,o) = vo(x), 0<x<L

at time t=0. Upon separating variables we find that any

solution of (103) - (104) has the form

(106) u(x,t)= ff){Ame(_a+iwm)t+]me(-a_iwm)tfsin(mnx/L)

m=1
.2
where i"= -1 and where
a = ’L/Zp
m2n27 n2 } 1/2
w = -
m { %o 4p°

are given in terms of the physical parameters T, p, #, L
which characterize the system, When (106) is subjected to
the initial conditions (105) we find that the complex
coefficients Ay, Ay, ... are given by the integrals

L
Amz(me)-ld/.{ubuo(x)-i[auo(x)+vo(x)]}sin(mnx/L)dx,m:l,Z,...
x=0

and thus depend on the choice of uo(x), vo(x).

Suppose now that

Y(t) = u(xo,t) , t>0
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1 lhe resulting displacement of t1he siraing at some fixed

point x 0 < x, < L. Using (106) we see that the transien1

0’ 0]
Y(t) can be written in the form

o

Y(t)= E:;[Amsin(mnxO/L)]e(‘°+iwm)t+[xmsin(mnxo/L)Je(-u-iwm)ig’

m=1

or equivalently in the form

= syt
- - v
I(t) = > a, e
v=1
where
a, = Amsin(mnxo/L) and s = -o+iw if v=2m-1, m=1,2,...
a, = Kmsin(mfxo/L) and s = —:—ium if v=2m, m=1.2,...

The poles s,, are more or less regularly spaced along the
vertical line Rez = -¢ in the left half plane, cf. Fig.1l, and
tney depend only on the physical parameters 7,p,%.L of

the system. On the other hand, the coefficients a,, depend

on the point of observation X and the initial excitation

(1.e., uo(x) and vo(x) .) The problem of transient analysis

is then to recover the sv's from certain samples
yk = Y(kT): k=0,1,2,...

of the signal Y(4t).
The intrinsic difficulty of the problem is now apparent.

At best we can hope to find the first few of the infinitely
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many system poles, s Moreover, if the initial stimulation

v *
of the string fails to excite a given mode, if the point of
observation X5 happens to lie at a node of that mode, or

if we unwittingly choose too small a sampling rate, then
the mode will be weakly represented (if at all) in the
sequence of samples y = (y5s ¥;5 Yps--- ) and we will fail

to find the corresponding s Nevertheless, in practice

vt
we find that if we use a reasonable sampling rate then it
is possible to extract at least the first few s,'s for
"almost" all choices of Xqs uo(x), and vo(x) . Analogous
considerations apply when we use transient analysis to

study more complex physical systems which cannot be

subjected to such a detailed analysis.
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(a)Small T (b) Intermediate T (c) Large T

S
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Figure 1. The transformation z=exp(sT) of (4) maps tihe s 's

from the left half s-plane onto the 2z,,'s within the unit

Fhelud b
i tels

circle of the z-plane, with T > O being the sampling interval.

(a) Wnen T is too small, the z_'s are tightly clustered

v
near 2z2=1,

28 LA
e miiakad

(b) When T is correctly chosen, the first few z,'s are
nicely separated.

(c) When T is too large, the z's are burried deep within

the unit circle.
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Figure 2. Contour plots of the SNR amplification factor
g(z) = | 1+z+22 |2/3 for the case where Yv(z) = l+z+2° .
Tne region of amplification (] is the set of points z

within the unit circle for wnich g(z) > 1.
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N=2 N=3 N=4 N=10

Emax=2 Bnax=> Emax=4 Bmax=10

Figure 3. The region of amplification (I for the case wnere

Y(z)=142+ ... +zN_l and N=2,3,4,10., As N increases, the
maximum SNR amplification g(1)=N also increases but (O_

shrinks in size.

[ = |
[ emem—

R=2 R=1.4 R=1,1 R=1.01

= =6 =
gmax gmax gmax max

Figure 4. The region of amplification for the case where
Y(z) = 14z/R + 22/R2 + ... and R=2, 1.4, 1.1, 1.01. As
R ¢ 1, the maximum SNR amplification g(1)=(R+1)/(R-1)

increases but & snrinks in size.
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Figure 5. The region of amplification for the case where

E, v(z) is given by (74) with p=2 and with the four poles

(Ri’ iei)’ i = 1,2 as shown. 1In this case (]  has the .
approximate form (71) and the corresponding preprocessing
scheme is well suited for pole patterns of the form shown
in Fig. 1 (b).
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